Space Station Info :: Research and Technology
Research and Technology
Investigation seeks to create self-assembling materials
When travelling farther into space, clever solutions to problems like engine part malfunctions and other possible mishaps will be a vital part of the planning process. 3D printing, or additive manufacturing, is an emerging technology that may be used to custom-create mission-critical parts. An integral piece of this process is understanding how particle shape, size distribution and packing behavior affect the manufacturing process. The Advanced Colloids Experiment-Temperature-7 investigation (ACE-T-7) aboard the International Space Station explores the feasibility of creating self-assembling microscopic particles for use in the manufacturing of materials during spaceflight. Read More
Spinning Science: Multi-use Variable-g Platform Arrives at the Space Station
Delivered to the International Space Station aboard SpaceX CRS-14, the Multi-use Variable-g Platform (MVP) is a new commercial testbed for centrifuge-based science aboard the orbiting laboratory. Because gravity determines so much of a live organism's behavior and growth, centrifuge-based experiments have long been a part of biological investigations in space. MVP greatly expands commercial and research opportunities in low-Earth orbit. Read More
Tiny Satellite's First Global Map of Ice Clouds
Looking at Earth from the International Space Station, astronauts see big, white clouds spreading across the planet. They cannot distinguish a gray rain cloud from a puffy white cloud. While satellites can see through many clouds and estimate the liquid precipitation they hold, they can't see the smaller ice particles that create enormous rain clouds. An experimental small satellite has filled this void and captured the first global picture of the small frozen particles inside clouds, normally called ice clouds which are start as tiny particles high in the atmosphere. Read More
Astronomers Release Most Complete Ultraviolet-Light Survey of Nearby Galaxies
The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). The researchers combined new Hubble observations with archival Hubble images for 50 star-forming spiral and dwarf galaxies in the local universe, offering a large and extensive resource for understanding the complexities of star formation and galaxy evolution. The project, called the Legacy ExtraGalactic UV Survey (LEGUS), has amassed star catalogs for each of the LEGUS galaxies and cluster catalogs for 30 of the galaxies, as well as images of the galaxies themselves. The star cluster catalogs contain about 8,000 young clusters. The star catalogs comprise about 39 million stars that are at least five times more massive than our Sun. Stars in the visible-light images are between 1 million and several billion years old; the youngest stars, those between 1 million and 100 million years old, shine prominently in ultraviolet light. Read More
Dark Matter Goes Missing in Oddball Galaxy
This image from the Hubble Space Telescope indicates that a huge ring of dark matter likely exists surrounding the center of CL0024+17 that has no normal matter counterpart. First and foremost, are many spectacular galaxies that are part of CL0024+17 itself, typically appearing tan in color. Next, a close inspection of the cluster center shows several unusual and repeated galaxy shapes, typically more blue. These are multiple images of a few distant galaxies, showing that the cluster is a strong gravitational lens. The unique galaxy, called NGC 1052-DF2, contains at most 1/400th the amount of dark matter that astronomers had expected. The galaxy is as large as our Milky Way, but it had escaped attention because it contains only 1/200th the number of stars. Given the object's large size and faint appearance, astronomers classify NGC 1052-DF2 as an ultra-diffuse galaxy. None of the ultra-diffuse galaxies discovered so far have been found to be lacking in dark matter. So even among this unusual class of galaxy, NGC 1052-DF2 is an oddball. Van Dokkum and his team spotted the galaxy with the Dragonfly Telephoto Array, a custom-built telescope in New Mexico they designed to find these ghostly galaxies. They then used the W.M. Keck Observatory in Hawaii to measure the motions of 10 giant groupings of stars called globular clusters in the galaxy. Stars and clusters in the outskirts of galaxies containing dark matter move at least three times faster. Read More